199 research outputs found

    A BAC-based physical map of the Nile tilapia genome

    Get PDF
    BACKGROUND: Cichlid fishes, particularly tilapias, are an important source of animal protein in tropical countries around the world. To support selective breeding of these species we are constructing genetic and physical maps of the tilapia genome. Physical maps linking collections of BAC clones are a critical resource for both positional cloning and assembly of whole genome sequences. RESULTS: We constructed a genome-wide physical map of the tilapia genome by restriction fingerprinting 35,245 bacterial artificial chromosome (BAC) clones using high-resolution capillary polyacrylamide gel electrophoresis. The map consists of 3,621 contigs and is estimated to span 1.752 Gb in physical length. An independent analysis of the marker content of four contigs demonstrates the reliability of the assembly. CONCLUSION: This physical map is a powerful tool for accelerating genomic studies in cichlid fishes, including comparative mapping among fish species, long-range assembly of genomic shotgun sequences, and the positional cloning of genes underlying important phenotypic traits. The tilapia BAC fingerprint database is freely available at

    How the Commonwealth of the Northern Mariana Islands Stalled COVID-19 for 22 Months and Managed its First Significant Community Transmission

    Get PDF
    OBJECTIVE: The Commonwealth of the Northern Mariana Islands (CNMI) is a remote Pacific island territory with a population of 47 329 that successfully prevented the significant introduction of coronavirus disease (COVID-19) until late 2021. This study documents how the response to the introduction of COVID-19 in CNMI in 2021 was conducted with limited resources without overwhelming local clinical capacity or compromising health service delivery for the population. METHODS: Data from COVID-19 case investigations, contact tracing, the Commonwealth\u27s immunization registry and whole genome sequencing were collated and analysed as part of this study. RESULTS: Between 26 March 2020 and 31 December 2021, 3281 cases and 14 deaths due to COVID-19 were reported in CNMI (case fatality rate, 0.4%). While notification rates were highest among younger age groups, hospitalization and mortality rates were disproportionately greater among those aged \u3e 50 years and among the unvaccinated. The first widespread community transmission in CNMI was detected in October 2021, with genomic epidemiology and contact tracing data indicating a single introduction event involving the AY.25 lineage and subsequent rapid community spread. Vaccination coverage was high before widespread transmission occurred in October 2021 and increased further over the study period. DISCUSSION: Robust preparedness and strong leadership generated resilience within the public health sector such that COVID-19 did not overwhelm CNMI\u27s health system as it did in other jurisdictions and countries around the world. At no point was hospital capacity exceeded, and all patients received adequate care without the need for health-care rationing

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3 and reports on four research projects.National Institutes of Health Grant R01 DC00194National Institutes of Health Grant P01 DC00119National Science Foundation Grant IBN 96-04642W.M. Keck Foundation Career Development ProfessorshipNational Institutes of Health Grant R01 DC00238Thomas and Gerd Perkins Award ProfessorshipAlfred P Sloan Foundation Instrumentation GrantJohn F. and Virginia B. Taplin Award in Health Sciences and TechnologyNational Institutes of Health/National Institute of Deafness and Other Communication DisordersNational Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant PO1 DC0011

    Dark Energy Survey Year 6 Results: Intra-Cluster Light from Redshift 0.2 to 0.5

    Full text link
    Using the full six years of imaging data from the Dark Energy Survey, we study the surface brightness profiles of galaxy cluster central galaxies and intra-cluster light. We apply a ``stacking'' method to over four thousand galaxy clusters identified by the redMaPPer cluster finding algorithm in the redshift range of 0.2 to 0.5. This yields high signal-to-noise radial profile measurements of the central galaxy and intra-cluster light out to 1 Mpc from the cluster center. Using redMaPPer richness as a cluster mass indicator, we find that the intra-cluster light brightness has a strong mass dependence throughout the 0.2 to 0.5 redshift range, and the dependence grows stronger at a larger radius. In terms of redshift evolution, we find some evidence that the central galaxy, as well as the diffuse light within the transition region between the cluster central galaxy and intra-cluster light within 80 kpc from the center, may be growing over time. At larger radii, more than 80 kpc away from the cluster center, we do not find evidence of additional redshift evolution beyond the cluster mass dependence, which is consistent with the findings from the IllustrisTNG hydrodynamic simulation. We speculate that the major driver of intra-cluster light growth, especially at large radii, is associated with cluster mass growth. Finally, we find that the color of the cluster central galaxy and intra-cluster light displays a radial gradient that becomes bluer at a larger radius, which is consistent with a stellar stripping and disruption origin of intra-cluster light as suggested by simulation studies.Comment: Submitted to MNRA

    Invasion and Persistence of Infectious Agents in Fragmented Host Populations

    Get PDF
    One of the important questions in understanding infectious diseases and their prevention and control is how infectious agents can invade and become endemic in a host population. A ubiquitous feature of natural populations is that they are spatially fragmented, resulting in relatively homogeneous local populations inhabiting patches connected by the migration of hosts. Such fragmented population structures are studied extensively with metapopulation models. Being able to define and calculate an indicator for the success of invasion and persistence of an infectious agent is essential for obtaining general qualitative insights into infection dynamics, for the comparison of prevention and control scenarios, and for quantitative insights into specific systems. For homogeneous populations, the basic reproduction ratio plays this role. For metapopulations, defining such an ‘invasion indicator’ is not straightforward. Some indicators have been defined for specific situations, e.g., the household reproduction number . However, these existing indicators often fail to account for host demography and especially host migration. Here we show how to calculate a more broadly applicable indicator for the invasion and persistence of infectious agents in a host metapopulation of equally connected patches, for a wide range of possible epidemiological models. A strong feature of our method is that it explicitly accounts for host demography and host migration. Using a simple compartmental system as an example, we illustrate how can be calculated and expressed in terms of the key determinants of epidemiological dynamics

    Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients

    Get PDF
    Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N

    Range-wide sources of variation in reproductive rates of northern spotted owls

    Get PDF
    We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993–2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades

    Data from a pre-publication independent replication initiative examining ten moral judgement effects

    Get PDF
    We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science
    • …
    corecore